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An Exact Expression for the Noise Resistance
R,, for the Hawkins Bipolar Noise Model

R. A. Pucel, Life Fellow, IEEE, and U. L. Rohde, Senior Member, IEEE

Abstract—A much used noise model for the bipolar transistor is
that based on Hawkins formulation. The model, however lacks an
expression for the noise resistance. An exact analytic expression,
based on the noise correlation matrix approach, is developed for
the noise resistance for this noise model.

I. INTRODUCTION

ERHAPS the most used analytic formulation of the noise

parameters of a bipolar transistor in the common emitter
mode is that of Hawkins [1]. Hawkin’s noise model, Fig.
1, is essentially a low-to-medium frequency model in that
it neglects all device capacitances except the emitter junc-
tion capacitance, and all parasitic resistances except the base
resistance, and does not include a phase shift factor in the
current gain. In Fig. 1, we denote the intrinsic portion of the
model enclosed with dashed lines. Three noise sources are
present, the two intrinsic shot noise sources, e. and i.,, plus
the thermal noise source of the extrinsic base resistance. These
sources can be considered “white” for all practical purposes.
All three sources are uncorrelated.! Their noise spectral power
densities are indicated by the formulas associated with Fig. 1.
The overbar implies a statistical average.

Hawkins derived simple analytic expressions for the mini-
mum noise figure and the optimum source impedance. Lacking
in this model is the expression for the noise resistance R,,.
In this letter, we present a simple analytic expression for
this noise parameter derived from the noise correlation matrix
approach (2].

To apply the noise correlation matrix approach we transform
the noise model in Fig. 1 to an equivalent one consisting
of two noise sources, a voltage source and a current source
preceding a noiseless version of the bipolar circuit of Fig. 1.
The transformed noise model takes the form shown in Fig.
2. Since the system is linear, the two noise sources of Fig. 2
can be expressed in terms of the three original noise sources
by a linear transformation. This also holds for noise power
spectra as represented by the noise power correlation matrices
[2]. These matrices are defined, respectively, for the intrinsic

Manuscript received September 9, 1992,

R. A. Pucel is with the Research Division, Raytheon Company, Lexington,
MA 02192.

U. L. Rohde is with Compact Softwarc, Patcrson, NJ 07504.

IEEE Log Number 9206459.

I Note that although the emitter and collector physical noise sources, in
reality, are correlated in a bipolar transistor, Hawkins transformed these
sources to a special circuit configuration (Fig. 1) that cancels the correlation
of the equivalent circuit sources. See [1] for details.
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Fig. 1. Hawkins noise model for the bipolar transistor.

device as N and for the transformed noise circuit as C, where
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Note that the noise sources in Fig. 2, generally speaking, are
correlated (Ci2 # 0). Here, k denotes Boltzmann’s constant,
T, = 293 K. The standard reference temperature, and B the
incremental noise bandwidth. As noted before, the overbar
denotes the statistical average, the asterisk the complex con-
jugate.? We wish to point out that the transformation from the
circuit of Fig. 1 to Fig. 2 does not involve any simplifications
or approximations in the formulation to follow.

The noise correlation matrix C can be obtained in terms of
N by a straightforward application of the steps outlined by

2We represent the noise spectra over the positive frequency range only,
unlike [2], which uses the doubly-infinite frequency range. This choice is
arbitrary and merely replaces the factor 2kT°B by 4kT B. This factor “cancels
out” in the determination of the four terminal noise parameters and therefore
does not affect the end results. In addition, we retain the bandwidth designation
B rather than setting it to unity.
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Fig. 2. The transformed noise model for the bipolar transistor used.

Hillbrand and Russer [2]. Thus we find

C = AZTN(AZT) { + ARAf, )

where the dagger denotes the Hermitian conjugate. The matrix
Z is just the inverse of the admittance matrix Y for the intrinsic
portion of Hawkin’s model, and 7" is a transformation matrix
which converts Hawkins’ intrinsic noise sources e. and i,
to shunt current sources, respectively, across the base-emitter
and collector-emitter ports of the intrinsic transistor. Thus,
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where g. = 1/r.. We have added a fictitious admittance
Y. across the a-current generator in Fig. 1 to overcome,
temporarily, the singularity of the actual Z matrix. However,
in the final evaluation of (2), this admittance is set equal to
zero, as its effect in this limit “cancels” out. The matrices A
and R are given by
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where the z; , denote the matrix elements of Z. Note that Ais a
circuit transformation matrix, whereas R is a noise correlation
matrix representing the thermal noise of the extrinsic base
resistance. Thus, the thermal noise of the base resistance
manifests itself as an additive term to the intrinsic noise of
the bipolar, signified by the first term in (2).

The elements of the noise correlation matrix C in (1b)
contain all necessary information about the four extrinsic
noise parameters Fr,in, R, opt, X s opt, and R, of the bipolar.
Hawkins [1] has given simple analytic expressions for the
first three. We shall present the missing expression for R,,.
This is especially easy to extract from the matrix C since
R, = C1:.2 By a straightforward but lengthy expansion of
C11 as derived from (2) in the limit Y, — 0, we obtain the

3 This follows from the definition R, = en ey [4kT,B.

TABLE 1
COMPARISON OF THE VALUES OF R, FOR THE EXAMPLE
TREATED BY HAWKINS CALCULATED BY USE OF
(5) AND FORMULAE IN [3] anD [4]

F(GHz) ®) 3] (4]
1 14.89 15.20 14.58
2 1535 16.60 1491
3 16.13 18.93 15.45
5 18.68 26.40 17.20
7 2211 37.61 19.81
10 32.06 61.42 25.37

following expression
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where f denotes the “cutoff” frequency of the common base
current gain o f), Fig. 1, as obtained by fitting the equivalent

circuit to measurements, and f. represents the emitter time
constant
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The dummy variable D is given by
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All remaining parameters are defined in Fig. 1. We must point
out that since no approximations were made in the derivation
of the correlation matrix expression (2) or in the evaluation
of the C); matrix element, the expression for R, is exact
for the noise model of Hawkins. Note, that (5) applies to
the unpackaged bipolar (chip). Package parasitics may have
a profound effect on the noise presistance measured at the
package terminals.
We have applied (5) to the example treated by Hawkins,
namely:

I, =4 mA

I, = apl,

ag = 0.98(F = 50)
C. = 2.65 pF

re = 6.5

Ry =110

fo =23 GHz

fe =9.24 GHz

fr = 4.42 GHz.

For comparison, we have also applied these parameter values
to two alternative, but approximate expressions for R, one
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Fig. 3. Comparison of various analytic formulae for R,.

proposed by Fukui [3], and another, a modification of Fukui’s
expression by Vendelin et al. [4].

The values (in ohms) derived by use of the three formu-
las are listed in Table I and are plotted in Fig. 3. Notice
that Fukui’s values (third column) increase too rapidly with
frequency. On the other hand, the simplification of Fukui’s
formula (fourth column) exhibits too mild a frequency depen-
dence. Unfortunately, Hawkins did not cite any experimental
values for R, for his example and we were unable to obtain

any noise resistance data for this chip device from vendor’s
catalog.

Ii. SUMMARY

A simple, but exact formula for R, has been presented
for the Hawkins noise model of the bipolar transistor. This
formula can be used in conjunction with the Hawkins formula
for Finin, Rsopt; and X, o to provide a complete set of
equations for representing the low-medium frequency range
noise performance of a bipolar transistor in chip form. We
caution the reader that the range of validity of the derived
expression for R,, should be confined to that of the Hawkins
model, itself. In practice, the neglected equivalent circuit
parameters in the Hawkins model and the effect of embedding
the chip in a package must be taken into account at higher
frequencies.
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