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An Exact Expression for the Noise Resistance

Rn for the Hawkins Bipolar Noise Model
R. A. Pucel, Lye Fellow, IEEE, and

AMract-A much used noise model for the bipolar transistor is
that based on Hawkins formulation. The model, however lacks an

expression for the noise resistance. An exact analytic expression,
based on the noise correlation matrix approach, is developed for
the noise resistance for this noise model.

I. INTRODUCTION

P ERHAPS the most used analytic formulation of the noise

parameters of a bipolar transistor in the common emitter

mode is that of Hawkins [1]. Hawkin’s noise model, Fig.

1, is essentially a low-to-medium frequency model in that

it neglects all device capacitances except the emitter junc-

tion capacitance, and all parasitic resistances except the base

resistance, and does not include a phase shift factor in the

current gain. In Fig. 1, we denote the intrinsic portion of the

model enclosed with dashed lines. Three noise sources are

present, the two intrinsic shot noise sources, ee and icP, plus

the thermal noise source of the extrinsic base resistance. These

sources can be considered “white” for all practical purposes.

All three sources are uncorrelated. 1 Their noise spectral power

densities are indicated by the formulas associated with Fig. 1.

The overbar implies a statistical average.

Hawkins derived simple analytic expressions for the mini-

mum noise figure and the optimum source impedance. Lacking

in this model is the expression for the noise resistance R~.

In this letter, we present a simple analytic expression for

this noise parameter derived from the noise correlation matrix

approach [2].

To apply the noise correlation matrix approach we transform

the noise model in Fig. 1 to an equivalent one consisting

of two noise sources, a voltage source and a current source

preceding a noiseless version of the bipolar circuit of Fig. 1.

The transformed noise model takes the form shown in Fig.

2. Since the system is linear, the two noise sources of Fig. 2

can be expressed in terms of the three original noise sources

by a linear transformation. This also holds for noise power

spectra as represented by the noise power correlation matrices

[2]. These matrices are defined, respectively, for the intrinsic
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1Note that although the emitter and collector physical noise sources, in
reality, are correlated in a bipolar transistor, Hawkins tmnsformed these
sources to a special circuit configuration (Fig. 1) that cancels the correlation
of the equivalent circuit sources. See [1] for details.
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Fig. 1, Hawkins noise model for the bipolm transistor

device as lV and for the transformed noise circuit as C, where

C=dm %1=[%a “b)
Note that the noise sources in Fig. 2, generally speaking, ;are

correlated (CU # O). Here, k denotes Boltzmann’s constant,

To = 293 K. The standard reference temperature, and B the

incremental noise bandwidth. As noted before, the overbar

denotes the statistical average, the asterisk the complex con-

jugate,2 We wish to point out that the transformation from the

circuit of Fig. 1 to Fig. 2 does not involve any sirnplijications

or approximations in the formulation to follow.

The noise correlation matrix C’ can be obtained in terms of

N by a straightforward application of the steps outlined by

2We representthe noise spectra over the positive frequency rmge OUIY,
unlike [2], which uses the doubly-infinite frequency range. This choice is
arbitrary and merely replaces the factor 2kTB by 4kTB. This factor “cancels
out’” in the determination of the four terminal noise parameters and therefore
does not affect the end results. In addition, we retain the bandwidth designation
B rather than setting it to unity.
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Fig. 2. The transformed noise model for the bipolar transistor used.

Hillbrand and Russer [2]. Thus we find

C = AZTN(AZT) f +ARAt, (2)

where the dagger denotes the Hermitian conjugate. The matrix

Z is just the inverse of the admittance matrix Y for the intrinsic

portion of Hawkin’s model, and T is a transformation matrix

which converts Hawkins’ intrinsic noise sources ee and i~P

to shunt current sources, respectively, across the base-emitter

and collector-emitter ports of the intrinsic transistor. Thus,

[

(1 – a)ge + jwce+ Y. –Y.
Y=

age — Yc Y. 1

.- 1

[1

T= “e ,
—Q_

r. –1

(3)

where gC = l/re. We have added a fictitious admittance

Y. across the a-current generator in Fig. 1 to overcome,

temporarily, the singularity of the actual Z matrix. However,

in the final evaluation of (2), this admittance is set equal to

zero, as its effect in this limit “cancels” out. The matrices A
and R are given by

[ b]
1 _zII+-R

Z?l
A=

o 1——
C21

‘=*[::I=c:1 ‘4)
where the Zz,~ denote the matrix elements of Z. Note that A is a

circuit transformation matrix, whereas R is a noise correlation

matrix representing the thermnl noise of the extrinsic base

resistance. Thus, the thermal noise of the base resistance

manifests itself as an additive term to the intrinsic noise of

the bipolar, signified by the first term in (2).

The elements of the noise correlation matrix C in (lb)

contain all necessary information about the four extrinsic

noise parameters ~~i., R,,Opt, Xs,opt, and Rn of the bipolar.

HawkIns [1] has given simple analytic expressions for the

first three. We shall present the missing expression for Rn.
This is especially easy to extract from the matrix C since

Rn = C1l.3 By a straightforward but lengthy expansion of

Cll as derived from (2) in the limit YC -+ O, we obtain the

3 ThIS follows from the definition R. = en e: /4kT~B.

TABLE I
COMPARISONOF THE VALUSS OF R. FOR THS EXAMPLE

TREATED BY HAWKINS CALCULATED BY USE OF
(5) AND FORMULAE IN [3] AND [4]

F(GHz) (5) [3] [4]

1 14.89 15.20 14.58

2 15.35 16.60 14.91

3 16.13 18.93 15.45

5 18.68 26.40 17.20

7 22.71 37.61 19.81

10 32.06 61.42 25.37

following expression

.(l_ao+(l_)2+(L-)2

+(+-(i)(i))’)]
(5)

where .fb denotes the “cutoff” frequency of the common base

current gain Q($), Fig. 1, as obtained by fitting the equivalent

circuit to measurements, and jC represents the emitter time

constant

fe . L.
27rreCe

(6)

The dummy variable D is given by

()
2

1+ &
D=

a: “
(7)

All remaining parameters are defined in Fig. 1. We must point

out that since no approximations were made in the derivation

of the correlation matrix expression (2) or in the evaluation

of the Cl 1 matrix element, the expression for & is exact

for the noise model of Hawkins. Note, $hat (5) applies to

the unpackaged bipolar (chip). Package parasitic may have

a profound effect on the noise presistance “measured at the

package terminals.

We have applied (5) to the example treated by Hawkins,

namely:

CYo= 0.98(/30 = 50)

c. = 2.65 pF

re = 6.5 Q

R~=l10

jj =23 GHz

f. = 9.24 GHz

~. = 4.42 GHz.

For comparison, we have also applied these parameter values

to two alternative, but approximate expressions for Rn one
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Fig. 3. Comparison of various anafytic formulae for R..

proposed by Fukui [3], and another, a modification of Fukui’s

expression by Vendelin et al. [4].

The values (in ohms) derived by use of the three formu-

las are listed in Table I and are plotted in Fig. 3. Notice

that Fukui’s values (thiid column) increase too rapidly with

frequency. On the other hand, the simplification of Fukui’s

formula (fourth column) exhibits too mild a frequency depen-

dence. Unfortunately, Hawkins did not cite any experimental

values for & for his example and we were unable to obtain

any noise resistance data for this chip device from vendor’s

catalog.

II. SUMMARY

A simple, but exact formula for & has been presented

for the Hawkins noise model of the bipolar transistor. This

formula can be used in conjunction with the Hawkins formula

for ~~in, 12~,0Pt, and X,,OPt to provide a complete set of

equations for representing the low-medium frequency range

noise performance of a bipolar transistor in chip form. We

caution the reader that the range of validity of the derived

expression for & should be confined to that of the Hawkins

model, itself. In practice, the neglected equivalent circuit

parameters in the Hawkins model and the effect of embedding

the chip in a package must be taken into account at higher

frequencies.
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